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1. Introduction
Detailed knee biomechanics, including ligaments elon-
gations, is essential for many orthopaedic procedures. 
Difficult access to the ligaments, intertwining of  bundles, 
and identification of  insertions are strong obstacles 
to the accurate evaluation of  ligaments’ elongations. 
Consequently, results are sometimes contradictory 
(Nasab et al. 2016) and there is an important disparity in 
the number of  research studies with ligaments receiving 
less attention than others. In silico studies can be used to 
compute these elongations (Tomescu 2017) but mod-
els still suffer from oversimplifications. Ligaments are 
complex fibrous connective tissue with various shapes 
that are most of  the time represented by deformable 
1D elements. The lack of  data on some of  the knee 
ligaments and the oversimplifications of  the models limit 
the understanding of  the impact of  each ligament struc-
ture in the knee biomechanics (Farshidfar et al. 2021). 
Although improving the knee model’s realism seems to 
be the ideal solution to ensure simulation fidelity, this 
might unnecessarily increase modelling and computation 
time. In addition, personalisation of  ligaments materials 
and geometry could be difficult to achieve. With these 
issues in mind, the evaluation of  ligaments’ impact on 
knee kinematics would provide valuable data on which 
knee ligaments to include and personalise.

This study aims to investigate the role of  knee lig-
aments during passive flexion in silico using a detailed 
biomechanical knee model.

2. Methods
A musculoskeletal knee model of  one healthy subject 
(40 years old, 94 kg, 1.73 m) was designed using an 
Artisynth (www.artisynth.org) multibody framework 
(Figure 1. (a), Elyasi et al. 2022).

CT-scans obtained with a low-energy procedure 
were used to capture the bones (femur, tibia, fibula 
and patella). A 3D high-definition MRI was performed 
for soft tissues and cartilages. The quadriceps muscles 
were modelled with multipoint strands able to wrap 
around obstacles. The same approach was used to 
model the knee ligaments, which included the poste-
rior and anterior cruciate ligaments (PCL and ACL), 
medial and lateral collateral ligaments (MCL and LCL), 
posterior oblique ligament (POL), anterior lateral liga-
ment (ALL), patellar ligament (PL), lateral and medial 
patellofemoral ligaments (LPFL and MPFL), lateral 
and medial patellotibial ligaments (LPTL and MPTL). 
When necessary, the ligaments were decomposed into 
different bundles, which were themselves composed 
of  several fibres. The Blankevoort’s material model 
(Blankevoort et al. 1991) was used with material param-
eters based on experimental data from the literature. 
The subject underwent five non-weight-bearing MRI 
sessions from full extension to maximal flexion (approx-
imately 138°). The tibia and fibula were fixed in dis-
placement. Flexion forces were applied on the femoral 
head to replicate the maximal flexion of  the MRI. Forces 
and ligaments’ elongations were computed during the 
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flexion. The position of  the femur centroid during the 
simulation was compared to the MRI segmentations 
to ensure that the simulated kinematic was close to the 
in vivo passive flexion.

3. Results and discussion
The error in the femur centroid position was at most 
17 mm, which was considered satisfactory considering 
the combined translation/rotation motion. The effect of  
the intertwining of  ligaments could be observed at high 
flexion angles (Figure 1. (b)). Such behaviour explains 
the difficulties of  modelling ligament structures with 
finite elements. As expected, not all ligaments impacted 
the knee biomechanics during passive flexion.

Table 1. Ligaments fiber’s elongations during knee flexion 
(normalised by the initial ligament’s length).

Ligaments Min Max Mean

ACL 0.1 0.9 0.4

PCL 0.0 0.4 0.2

MCL 0.1 0.5 0.2

LCL 0.0 0.3 0.2

POL 0.1 0.1 0.1

ALL 0.5 1.1 0.8

PL 0.0 0.1 0.0

MPFL 0.2 0.3 0.2

LPFL 0.1 0.3 0.2

LPTL 0.0 0.0 0.0

MPTL 0.0 0.0 0.0

An example of  the LCL force-strain curves 
(Blankevoort’s model and simulation) is provided in 
Figure 1. (b). Most ligaments with multiple bundles 
and/or fibres exhibited a high heterogeneity in terms 
of  elongations. Ligament fibres’ maximal and minimal 
elongations are summarised in Table 1. The lateral and 
medial PL bundles, the LPTL, MPTL and the POL pro-
duced negligible forces. Consequently, these ligaments 
could be removed in future work to simplify flexion 
simulations. The differences in ligament fibres’ elonga-
tions might be explained by the proposed model which 
enabled ligaments to wrap around bones. In addition, 
ligament torsion and mediolateral and anteroposterior 
elongation differences could be computed thanks to the 

fine description of  the ligaments with multiple strands, 
which is close to the real 3D geometry of  the ligaments. 
Such behaviour could not be observed with 2D imaging 
techniques nor with oversimplified ligament models. 
Experimental measurements are also tedious to obtain 
for some ligaments due to the lack of  accessibility. The 
large variability of  methods inherently complicates the 
comparison with literature data.

4. Conclusions
Ligament elongations play a significant role in knee 
biomechanics and could be a valuable metric for many 
clinical applications (knee osteotomy, total knee arthro-
plasty, ligamentoplasty etc.). The lack of  gold-stand-
ard measurement methods and modelling approaches 
results in a high variability of  reported elongations. The 

Figure 1. (a)Model with ligaments. (b) LCL fibers force-
strains curves (dot line: Blankevoort’s model, solid lines: 
simulations).
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proposed model enables the computation of  ligaments’ 
heterogeneous elongations during flexion. Future work 
includes the conduct of  an experimental campaign on 
cadaveric samples to validate the proposed model.
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